Campylobacter Geospatial Cluster Analysis, Colorado, 2001 – 2010

Ben White, MPH Fall EIP Meeting 2013

Colorado Department of Public Health and Environment

Campylobacter 101

Symptoms (1-10 Days After Exposure):

• Diarrhea

Nausea

• Ab. Pain

Vomiting

• Fatigue

• Fever

Common Sources:

- Undercooked poultry, beef and pork
- Unpasteurized dairy products
- Un-chlorinated water
- Raw produce
- Food or drink contaminated with fecesAnimal contact

Diagnostic Testing:

- Culture from clinical specimen (confirmed)
- Antigen-based or PCR test (suspect)
- 7 day reportable condition in CO

Campylobacter Research Objectives

- Analyze sporadic case data from the Colorado Electronic Disease Reporting System (CEDRS) to understand disease trends and patterns.
- Identify clusters or 'hot spots' of sporadic cases in the state of Colorado across space and time using geospatial methods.
- Attempt to model the incidence rate differences with independent variables from existing statewide datasets at a meaningful spatial resolution.

HYPOTHESES

- That rates differ significantly by geography across Colorado
- Campylobacter rates are higher in rural areas due to differences in urban/rural living (geography, number of restaurants, water systems, SES, employment type)
- Intensity of agriculture (particularly livestock) and associated animal contact is a driving force behind higher Campylobacter rates.

First Law of Geography

"Everything is related to everything else, but near things are more related than distant things."

–Waldo Tobler, PhD

Literature Review of Spatial Statistical Methods

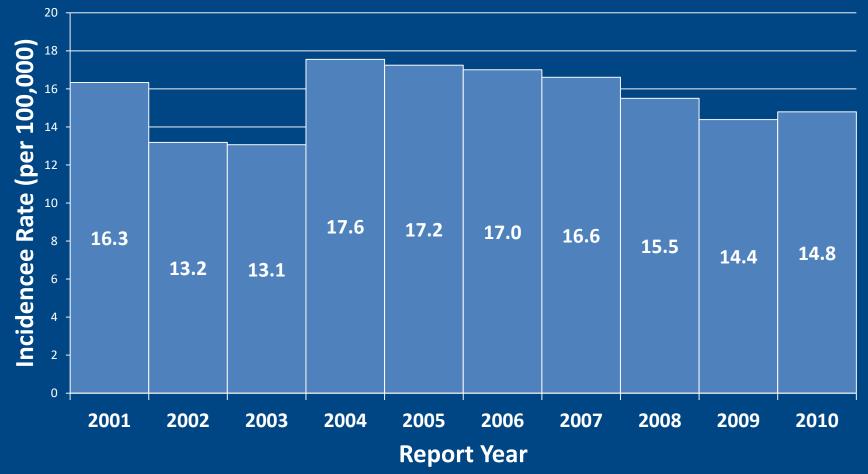
			Cluster				
Article	Disease	Cases	Detection	Resolution	Spatial analysis	Variables	Software
					Lorenz Curve, Gini		
					Coefficient, Poisson		
				census sub-divisions	Regression, Smoothing,	age group, gender, urban/rural,	
Green Krause			Spatial Scan	and local neighborhood			SigEpi, S-Plus,
Wylie 2006	Campy	Confirmed C	Statistic	(city)	Pearson's R	animals densities i	ArcGIS, SatScan
					Poisson, Cube		
Jepsen et al			Modified Local	One county, and then	Neighborhood weights		ArcGIS, SatScan,
2009	Campy	Lab Positive	Moran's I	country	matrix. Smoothing	unknown	NetLogo
					Poisson, Chi Square, Joint		
					Count Statistics, Pearson's		
Kistemann et al		all human				farm density, cattle density, %	
2004	STEC/EHEC	cases	Moran's I	county level	Regression	farms with cattle	ArcGIS, SPSS
					OLS and MLE regression		
Michell et al		Laboratory	Moran's I and G	county level and	with Inverse Distance	total ag land, cattle density,	
1999	STEC/EHEC	Confirmed	Statistic	centroids	Matrix	livestock density	ArcGIS, SpaceStat
					smoothing of rates, log		
		reported		collection districts and	linear modeling of case		ArcGIS, CrimeStat,
Morgan 2002	Campy	cases	kerneling	centroids	data	age, gender,	SatScan
		All domestic					
Nygard et al		reported		municipalities and		Percipitation, temperature,	
2004	Campy	cases	NONE	county	Pearson's R, Poisson,	water supply, ag	ArcGIS, Stata
					Poisson, Bayesian		
		reported	Spatial Scan	census sub-divisions or	smoothed, Spearman's		
Odoi et al 2004	Giardia	cases	Statistic	county	Rank	animal density, age, gender, etc.	ArcGIS, SatScan
		Sporadic					
Valcour et al		reported				ag land, soil, drainage, age,	
2002	STEC/EHEC	cases		census sub-division		gender	ArcGIS,
		lab					
		confirmed					
		cases and					
		positive					
		broiler	Spatial Scan	municipalities and		population density of broilers,	
Jonsson 2010	Campy	flocks	Statistic	county	Relative Risk	humans,	ArcGIS, SatScan

Colorado Campylobacter Case Finding Process

-Lab confirmed campy cases (culture)
- CollectDt 01/01/2001 to 12/31/2010
-Not part of an outbreak
-Colorado resident at time of diagnosis

7750 Cases Between 2001 and 2010

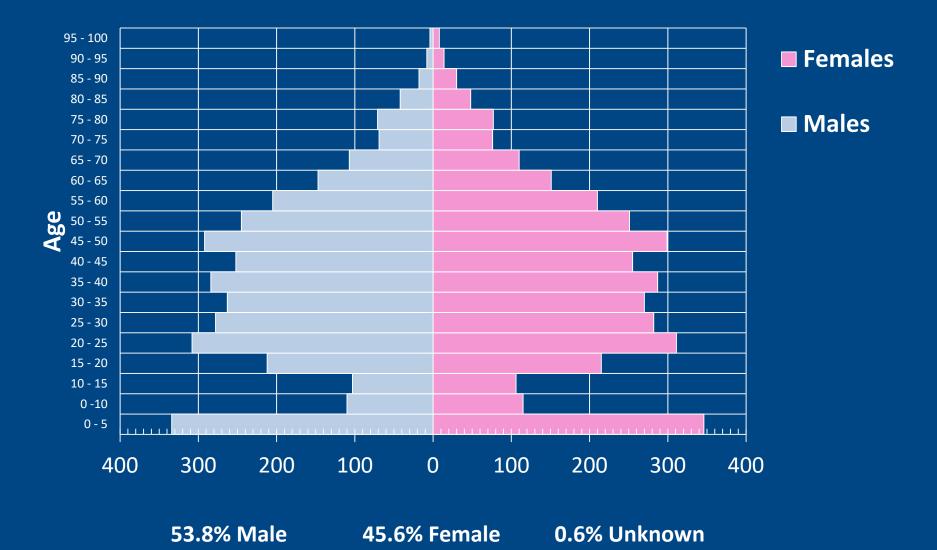
-Address verification -Case status verification -Outbreak verification



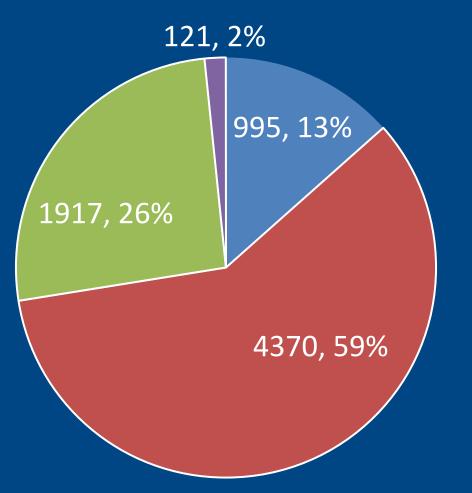
-7403 Cases-Calculate yearly crudeincidence rates by county

DESCRIPTIVE STATISTICS

Colorado Sporadic Campylobacter Cases: Incidence Rates per 100,000 2001-2010

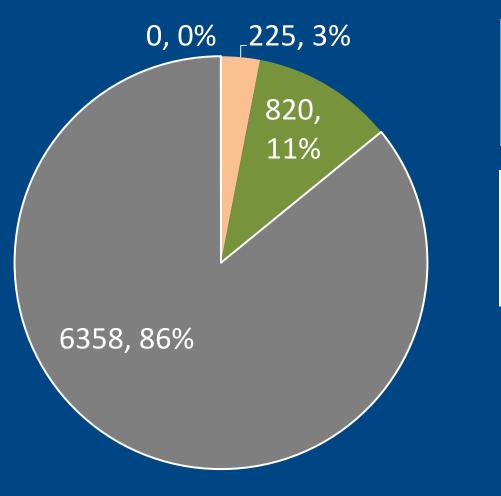

740 annual case average

Colorado Sporadic Campylobacter Cases by Month, 2001-2010



June , July and August are peak months for Campylobacter infection in Colorado, which mirrors national trends

Colorado Sporadic Campylobacter Cases, Age/Sex Distribution, 2001-2010


Sporadic Campylobacter Cases by Ethnicity Colorado, 2001-2010

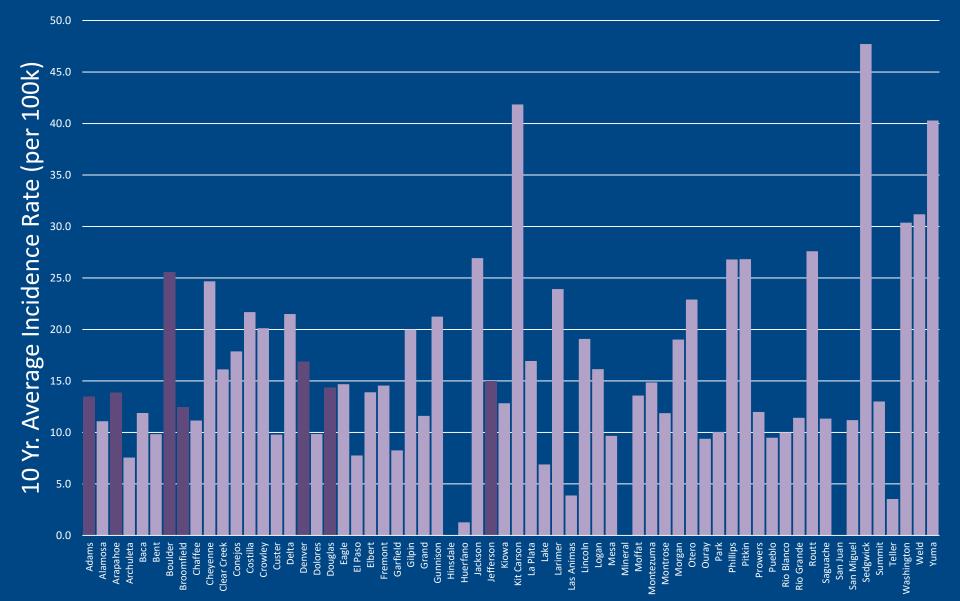
2001-2010 Colorado Pops: Hispanic – 19.3% Non Hispanic – 80.7%

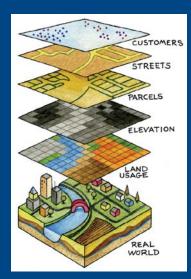
Hispanic Not Hispanic Unknown Blank

Sporadic Campylobacter Cases by CRHC Class Colorado, 2001-2010

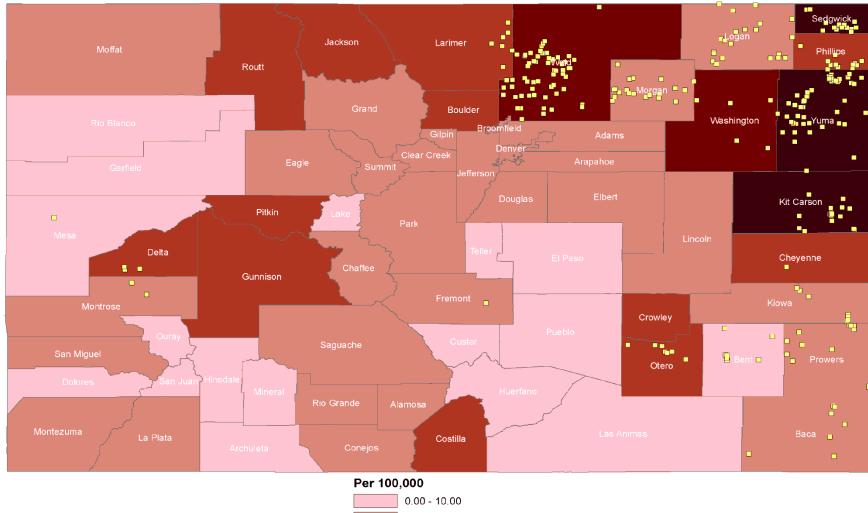
2001-2010 Colorado Pops: Urban - 86.0 % Ruran - 11.3% Frontier - 2.7%

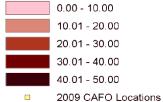
The State Office of Rural Health




Qualitative Analysis of Case Notes from CEDRS

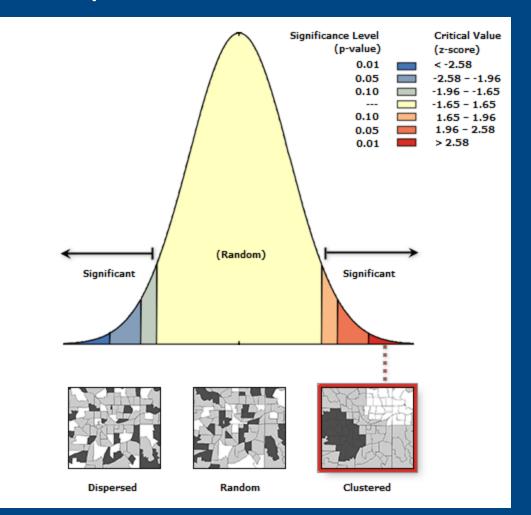
- Words that occur most frequently in notes are larger in word cloud.
 - Not phrase-based, words are out of context
 - Not statistically significant


Campylobacter Incidence Rates per 100,000, by County, 2001-2010 Average



GIS Cluster Analysis

Colorado: Sporadic Campylobacter Cases, Incidence Rates Per 100,000, 2001-2010

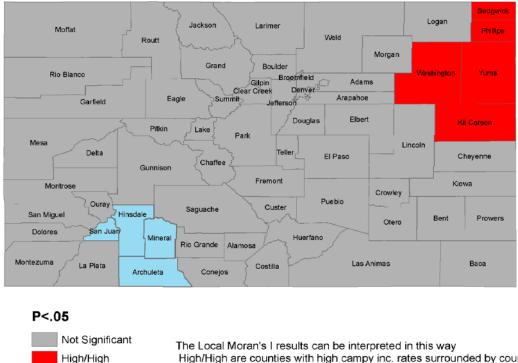

Global Moran's I

$$I = \frac{N}{\sum_i \sum_j w_{ij}} \frac{\sum_i \sum_j w_{ij} (X_i - \bar{X})(X_j - \bar{X})}{\sum_i (X_i - \bar{X})^2}$$

- Test for spatial autocorrelation.
- Compares whole dataset against one location, looks at variable and its variance
- Varies between -1 and 1, with 0 being completely random i.e. no association. Negative (dissimilar) and Positive (similar) spatial autocorrelation exists.
- Spatial weights matrix needed. This study uses 9 Nearest Neighbors (max. number counties bordering a CO county, Lincoln County)

Global Moran's I

Moran's Index: z-score: p-value: **0.370353** 6.575428 0.0000001

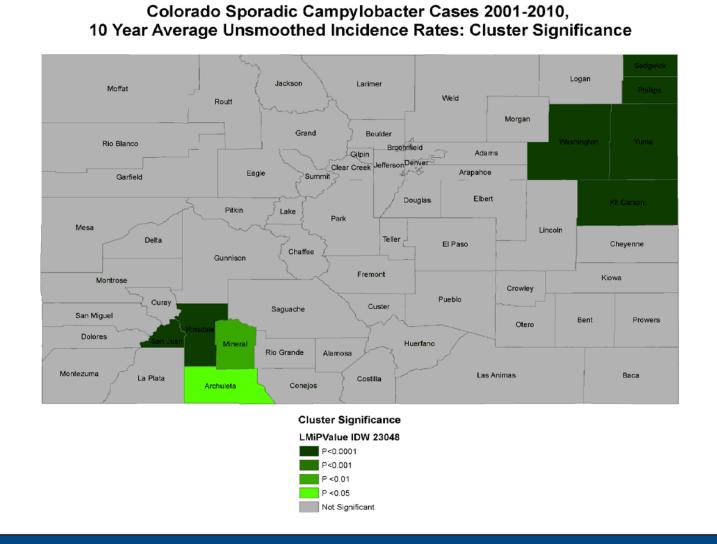


Given the z-score of 6.58, there is a less than 1% likelihood that this clustered pattern could be the result of random chance.

Local Moran's I (Anselin's LISA)

- Calculates statistic for each single location (polygon) and compares it to index
- Index is the spatial weights matrix, calculated based on previously defined k nearest neighbors (NN=9 in our case)
- Since each index has an associated statistic, we can compare statistical significance of relationship between polygon and its neighbors
- Better at discerning spatial patterns than Global Moran's

Colorado Sporadic Campylobacter Cases 2001-2010, 10 Year Average Unsmoothed Incidence Rates: Local Moran's I Results



High/High are counties with high campy inc. rates surrounded by counties that also show high incidence rates. Low/Low are counties with low campy inc. rates surrounded by counties that also have low inc. rates.

Cluster of high incidence rates in the agrarian NE corner of the State. Cluster of low incidence rate in the SW corner of the state. Counties assigned "H" and "L" in dataset cluster variables.

High/Low

Low/High Low/Low

Statistically significant cluster relationships as determined by LISA (Sedgwick, Phillips, Washington, Yuma, and Kit Carson counties) (Mineral, Archuleta, Hinsdale & San Juan C=counties)

SaTScan[™]

Software for the spatial, temporal, and space-time scan statistics

Purpose

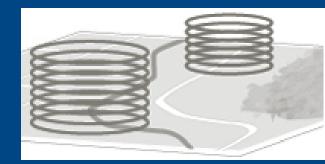
Download [SaTScan v9.1.1 March 9 2011]

Home

- Technical Documentation
- Bibliography
- 🗾 Data Sets
- 🗾 Contact Us

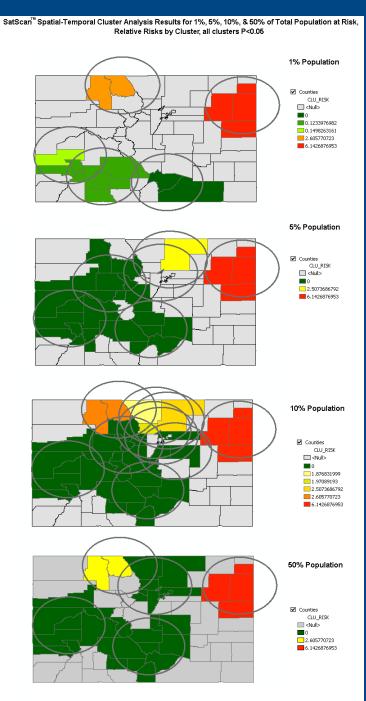
SaTScan[™] is a free software that analyzes spatial, temporal and space-time data using the spatial, temporal, or space-time scan statistics. It is designed for any of the following interrelated purposes:

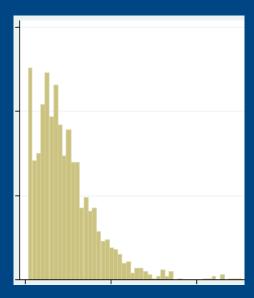
- Perform geographical surveillance of disease, to detect spatial or space-time disease clusters, and to see if they are statistically significant.
- Test whether a disease is randomly distributed over space, over time or over space and time.
- Evaluate the statistical significance of disease cluster alarms.
- Perform repeated time-periodic disease surveillance for early detection of disease outbreaks.


The software may also be used for similar problems in other fields such as archaeology, astronomy, botany, criminology, ecology, economics, engineering, forestry, genetics, geography, geology, history, neurology or zoology.

Data Types and Methods

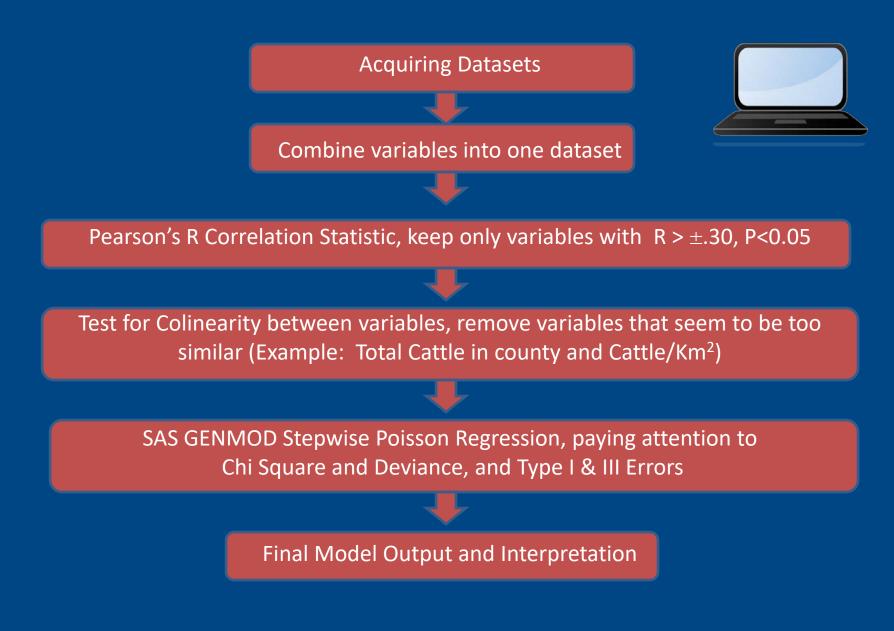
SaTScan uses either a Poisson-based model, where the number of events in a geographical area is Poisson-distributed, according to a known underlying population at risk; a Bernoulli model, with 0/1 event data such as cases and controls; a space-time permutation model, using only case data; an ordinal model, for ordered categorical data; an exponential model for survival time data with or without censored variables; or a normal model for other types of continuous data. The data may be either aggregated at the census tract, zip code, county or other geographical level, or there may be unique coordinates for each observation. SaTScan adjusts for the underlying spatial inhomogeneity of a background population. It can also

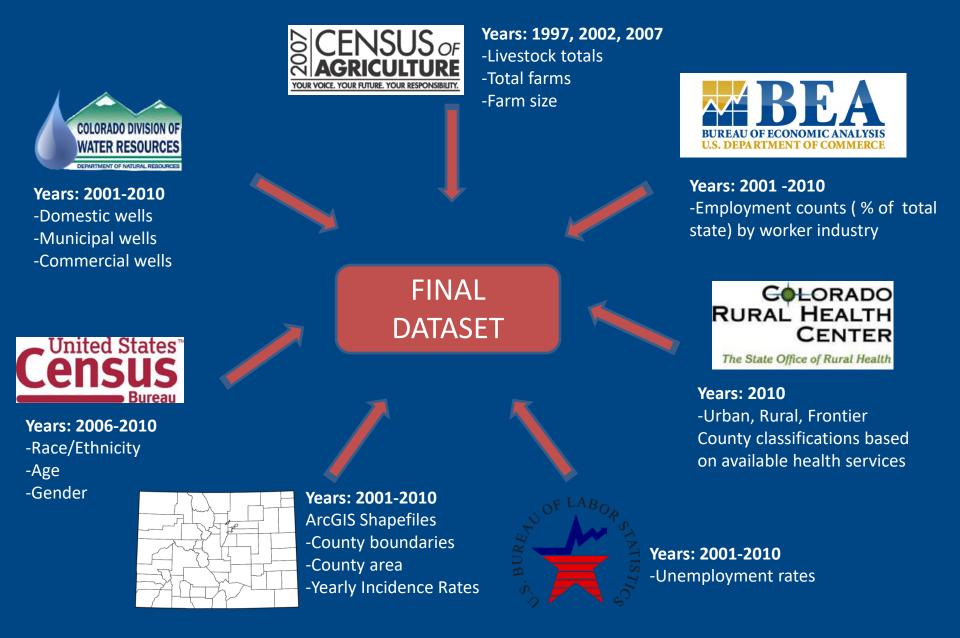

- Yearly campylobacter case counts by county (2001-2010)
- Yearly total population by county (2001-2010)
- US Census Population- based centroids
- Discrete Poisson Space/Time Model, 999 Monte Carlo iterations
- 6 different cylinder limitations explored: -1% of population and no distance limit
 -1% of population and 100km
 -5% of population and 100km
 -10% of population and 100km
 -50% of the population and 50km
 - 50% of the population and 100km



SaTScan[™]

Software for the spatial, temporal, and space-time scan statistics


- Phillips, Yuma, Washington, and Kit Carson identified as cluster (Sedgwick left out)
- Found with multiple scan window sizes
- Relative Risk (RR) of this cluster is 6.14, representing how much more common disease is in this location and time period compared to the baseline
- SW corner of lower (RR) picked up in 1% Pop window only



Poisson Regression Analysis

Poisson Regression Analysis Steps

Modeling Disease, Host, Environment

Pearson's R – Continuous Variables

Variable	Pearson's R	P Value	Туре
Avg # of Hogs	0.4627	0.0009	Strong Direct Relationship
Avg. # of Farmland (Acres)	0.43133	0.0005	Strong Direct Relationship
Avg. # Cattle	0.40183	0.0012	Strong Direct Relationship
COWS/KM2	0.43731	0.0004	Strong Direct Relationship
HOGS/KM2	0.44679	0.0015	Strong Direct Relationship
Avg. Broiler Chickens	0.40745	0.0074	Strong Direct Relationship
Median Farm Size (Acres)	0.31905	0.0108	Moderate Direct Relationship
FARMS/KM2	0.28804	0.021	Moderate Direct Relationship
Avg. # of Farms	0.28653	0.0217	Weak Direct Relationship
Avg # Farmer Employees	0.28487	0.0225	Weak Direct Relationship
10 Year Unemp. Rate (Mean)	-0.3694	0.0027	Moderate Inverse Relationship
10 Year Unemp. Rate(Median)	-0.34235	0.0056	Moderate Inverse Relationship

ANOVA – Categorical Variables

ANOVA: Sing	gle Factor					
SUMMARY						
Groups	Count	Sum				
Urban	17	257.15				
Rural	24	374				
Frontier	23	379.31				
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	19.84	2	9.92	0.1058	0.8997	3.15
Within						
Groups	5716.73	61	93.72			
Total	5736.57	63				

F is 0.10, F Critical is 3.14, .10 < 3.14 so we fail to reject H_0 that they don't differ

Model Output: Significant Variables

Parameter	URFClass	Wald Chi Sq.	P-Value	IRR
Intercept		665.83	<0.0001	
Farms/Km2	-	103.02	< 0.0001	7.95463
Farm Employees (Avg)	-	12.91	0.0003	1.00012
Food Service Emp (Avg)	-	93.15	< 0.0001	1.00003
% Pop.Under 5yo (2010Census)	-	84.73	< 0.0001	0.84714
Median 10yr Unemp. Rate (%)	-	59.8	< 0.0001	0.78437
Broiler Chickens (Avg)	-	6.69	0.0097	1.00018
URFClass-Urban	1	21.29	< 0.0001	0.58295
URFClass- Rural	2	10.92	0.0009	0.74026
URFClass-Frontier	3			1.00000
Wells (# of)	-	46.74	< 0.0001	0.99965
% Pop. Hispanic (2010 Census)	-	32.18	< 0.0001	1.01385

Model Output: IRR Interpretations

•Increasing the number of farms/km² by one (1) farm increases the estimated incidence rate by a factor of 7.9.

•Increasing the number of broiler chickens in a county by 1000 increases the estimated incidence rate by a factor of 1.2.

•The incidence rate for living in an urban county is 0.59 times the incidence rate of living in a frontier county."

Model Output: Case Predictability

County	Cases	Predicted	residual			
Cluster Counties						
Yuma	40	36.4	3.6			
Washington	15	12.2	2.8			
Kit Carson	34	18.7	15.3			
Front Range Counties						
Adams	540	505.1	34.9			
Jefferson	789	790.5	-1.4			
Douglas	354	346.4	7.6			
Weld	706	712.1	-6.2			
Arapahoe	741	773.2	-32.2			

Model Output: Goodness of Fit

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF	
Deviance	31	152.7181	4.9264	
Scaled Deviance	31	152.7181	4.9264	
Pearson Chi-Square	31	139.6977	4.5064	
Scaled Pearson X2	31	139.6977	4.5064	
Log Likelihood		30476.1267		
Full Log Likelihood		-191.3600		
AIC (smaller is better)		404.7200		
AICC (smaller is better)		413.5200		5
BIC (smaller is better)		423.8343		

Model Issues

- Too Small of N (42/64 counties)?
- Urban/Rural/Frontier, ANOVA = NO but Poisson model = YES?
- Inverse relationship Median Unemployment rate and Incidence?
- Missing important variable(s)?
- Incomplete data on existing variables?
- Other Methods?
- Modeling Case Counts instead of Rates?

Conclusions:

- Discernible clustering of campylobacter in the NE Region of the State across space and time (i.e. persistent)
- Employment and Ethnicity play a factor (proxy for SES)
 (e.g. +Unemployment, Reported Disease)
- The interaction between agent, host, and environment is complex -> It's just a model.

Study Implications and Actions

- Public health education in rural counties regarding illness and animal/farm contact
- Build relationships between rural local health agencies, their hospitals, and local agriculture businesses
- More in depth interview questionnaires in 'cluster counties' to identify more specific exposures
- Need for accurate and timely laboratory methods to confirm diagnosis so that similar studies can be conducted

THANK YOU!

Alicia Cronquist , CDPHE

Devon Williford, CDPHE

Russ Rickard, CDPHE

Local County Health Departments

Labs, Clinics, and Hospitals

QUESTIONS

Ben White, MPH Phone: 303.691.4920 Email: